P4241【NOIP2016 DAY2】蚯蚓 | ||
|
问题描述
蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓。
蛐蛐国里现在共有 \(n\) 只蚯蚓(\(n\) 为正整数)。每只蚯蚓拥有长度,我们设第 \(i\) 只蚯蚓的长度为 \(a_i\) (\(i=1,2,\dots,n\)),并保证所有的长度都是非负整数(即:可能存在长度为 $0$ 的蚯蚓)。
每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任选一个)将其切成两半。神刀手切开蚯蚓的位置由常数 \(p\)(是满足 $0 < p < 1$ 的有理数)决定,设这只蚯蚓长度为 \(x\),神刀手会将其切成两只长度分别为 \(\lfloor px \rfloor\) 和 \(x - \lfloor px \rfloor\) 的蚯蚓。特殊地,如果这两个数的其中一个等于 $0$,则这个长度为 $0$ 的蚯蚓也会被保留。此外,除了刚刚产生的两只新蚯蚓,其余蚯蚓的长度都会增加 \(q\)(是一个非负整常数)。
蛐蛐国王知道这样不是长久之计,因为蚯蚓不仅会越来越多,还会越来越长。蛐蛐国王决定求助于一位有着洪荒之力的神秘人物,但是救兵还需要 \(m\) 秒才能到来……(\(m\) 为非负整数)
蛐蛐国王希望知道这 \(m\) 秒内的战况。具体来说,他希望知道:
- \(m\) 秒内,每一秒被切断的蚯蚓被切断前的长度(有 \(m\) 个数);
- \(m\) 秒后,所有蚯蚓的长度(有 \(n + m\) 个数)。
蛐蛐国王当然知道怎么做啦!但是他想考考你……
输入格式
第二行包含 \(n\) 个非负整数,为 \(a_1, a_2, \dots, a_n\),即初始时 \(n\) 只蚯蚓的长度。
同一行中相邻的两个数之间,恰好用一个空格隔开。
保证 \(1 \leq n \leq 10^5\),\(0 \leq m \leq 7 \times 10^6\),\(0 < u < v \leq 10^9\),\(0 \leq q \leq 200\),\(1 \leq t \leq 71\),\(0 \leq a_i \leq 10^8\) 。
输出格式
第二行输出 \(\left \lfloor \frac{n+m}{t} \right \rfloor\) 个整数,输出 \(m\) 秒后蚯蚓的长度;需要按从大到小的顺序,依次输出排名第 \(t\),第 $2t$,第 $3t$,……的长度。
同一行中相邻的两个数之间,恰好用一个空格隔开。即使某一行没有任何数需要输出,你也应输出一个空行。
请阅读样例来更好地理解这个格式。
样例输入 1
3 7 1 1 3 1
3 3 2
样例输出 1
3 4 4 4 5 5 6
6 6 6 5 5 4 4 3 2 2
样例输入 2
3 7 1 1 3 2
3 3 2
样例输出 2
4 4 5
6 5 4 3 2
样例输入 3
3 7 1 1 3 9
3 3 2
样例输出 3
2