TouchStone
  请登录后使用
登录 注册
 系统首页  练习题库  考试列表  判题结果  问题讨论与解答  统计信息与排名
  • 首页
  • 题库
  • P1986
  • 题目
  • P1986【高斯消元】开关问题
    限制 : 时间限制 : 10000 MS   空间限制 : 65536 KB
    问题描述

    有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

    输入格式

    输入第一行有一个数K,表示以下有K组测试数据。
    每组测试数据的格式如下:
    第一行 一个数N(0 < N < 29)
    第二行 N个0或者1的数,表示开始时N个开关状态。
    第三行 N个0或者1的数,表示操作结束后N个开关的状态。
    接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。

    输出格式

    如果有可行方法,输出总数,否则输出“Oh,it's impossible~!!” 不包括引号

    样例输入

    2
    3
    0 0 0
    1 1 1
    1 2
    1 3
    2 1
    2 3
    3 1
    3 2
    0 0
    3
    0 0 0
    1 0 1
    1 2
    2 1
    0 0

    样例输出

    4
    Oh,it's impossible~!!

    提示

    第一组数据的说明:
    一共以下四种方法:
    操作开关1
    操作开关2
    操作开关3
    操作开关1、2、3 (不记顺序)


    来源  poj 1830